Covariate adjusted measures of diagnostic accuracy based on pooled biomarkers

Christopher McMahan

Collaborators: Alexander McLain, Colin Gallagher, and Enrique Schisterman

October 13, 2016

Biological marker (or biomarker) evaluation

☐ The motivation behind evaluating new biomarkers: ☐ Identify new markers that can be used to asses exposures ☐ Identify new markers for disease detection ☐ In 2011, 70% of the original articles in *Clinical Chemistry*, were focused on biomarker evaluation; Boyd et al. (2012) ☐ HIV; Kanekar (2010) ☐ Cancer; Borges et al. (2013) ☐ Cardiovascular disease; Sabatine et al. (2012) ☐ This area of epidemiological research is often limited due to the cost associated with measuring biomarker levels □ Caudill (2012) reported a cost of \$1400 per specimen to obtain a single analytical measurement of 61 polychlorinated and 13 polybrominated compounds ☐ If you know me, you would know how I would solve this problem, more on this shortly

Biomarker evaluation: Measures of discriminatory ability

- ☐ Several common measures:
 - ☐ Receiver operating characteristic (ROC) curve
 - ☐ Area under the ROC curve (AUC)
 - ☐ Youden Index (YI)
- \Box Let f_{C^-} and f_{C^+} denote the probability distribution functions for the biomarker levels associated with cases and controls, respectively
- \Box Consider a test that diagnoses a subject as positive if their biomarker level is above a threshold t

Sensitivity:
$$S_e(t) = P(\text{test} + |\text{truly}+) = \int_t^{\infty} f_{C^+}(c)dc$$

Specificity:
$$S_p(t) = P(\text{test} - |\text{truly}-) = \int_{\infty}^{t} f_{\mathcal{C}^-}(c)dc$$

Measures of discriminatory ability

- \Box $f_{\mathcal{C}^+}$ $(f_{\mathcal{C}^-})$ denoted by the red (black) curve
- \Box t denoted by the yellow line
- \Box $S_e(t)$ $(S_p(t))$ denoted by the dark (light) blue shaded region

Receiver operating characteristic (ROC) curve

Construction: Plot $S_e(t)$ versus $1 - S_p(t)$, for all t

- ☐ If the ROC curve (red) is "far" from the chance line (black) then the biomarker is a good discriminator
- ☐ If the ROC curve (red) is "close" to the chance line (black) then the biomarker is not a useful discriminator

Area under the ROC curve (AUC)

Calculation: AUC = $P(C^+ > C^-)$, where $C^+ \sim f_{C^+}$, $C^- \sim f_{C^-}$

- ☐ If AUC≈ 1, then the biomarker is a good discriminator
- ☐ If AUC≈ 0.5, then the biomarker is not a useful discriminator

Youden index (YI): Youden (1950)

Calculation: YI = $\sup_{t \in \mathbb{R}} \{ S_e(t) + S_p(t) - 1 \}$

- ☐ YI is the maximum vertical distance (blue) between the ROC curve (red) and the chance line (black)
- \Box If YI $\approx 1(0)$, then the biomarker is an (in)effective discriminator

Pooled biomarker evaluation

□ Pooling: A means to reduce testing cost ☐ Physically combine several specimens into a pool and then measure the pool for the characteristic of interest \square If one uses pools of size c, then N specimens can be assessed at the cost of J = N/c measurements; i.e. at a drastic reduction in testing cost □ Dorfman (1943) originally proposed pool (group) testing ☐ Group testing has been used in many venues: ☐ Infectious disease screening: ☐ HIV, HBV, and HCV; Stramer et al. (2013) ☐ Chlamydia and gonorrhea; Lindan et al. (2005) ☐ Identifying lead compounds in drug discovery; Remlinger et al. (2006) □ Screening for viral agents in the case of bioterrorism; Schmidt et al. (2005) □ Detecting rare mutations in genetics; Gastwirth (2000)

Pooled biomarker evaluation

□ Several authors have investigated the use of pooled assessments to evaluate the discriminatory ability of a biomarker of interest ☐ Faraggi et al. (2003) ☐ Liu and Schisterman (2003) **□** Mumford et al. (2006) □ Bondell et al. (2007) □ Vexler et al. (2008) ☐ Malinovsky et al. (2012) □ Regretfully, all of these techniques have failed to acknowledge confounding factors (e.g., age, sex, gender, race, etc.) ☐ The focus of this work is to develop methods of estimating covariate dependent ROC curves, AUCs, and Youden

indices based on pooled biomarker assessments

Models, notation, and assumptions

Control model:

$$Y_{ij-} = \mathbf{X}'_{ij-} \boldsymbol{\beta}_- + \epsilon_{ij-}$$
, for $i = 1, ..., c_-$ and $j = 1, ..., J_-$

Case model:

$$Y_{ij+} = \mathbf{X}'_{ij+} \boldsymbol{\beta}_{+} + \epsilon_{ij+}$$
, for $i = 1, ..., c_{+}$ and $j = 1, ..., J_{+}$

where,

- \square $Y_{ij-}(Y_{ij+})$ are the biomarker levels of the controls (cases)
- \square \mathbf{X}_{ij-} (\mathbf{X}_{ij+}) is a p-dimensional vector of covariates
- \square β_{-} (β_{+}) is a vector of regression parameters
- \square $\epsilon_{ij-} \stackrel{iid}{\sim} N(0, \sigma_{-}^2)$ and $\epsilon_{ij+} \stackrel{iid}{\sim} N(0, \sigma_{+}^2)$

Note: When pooled assessments are being made the individual level biomarker levels (i.e., Y_{ij-} and Y_{ij+}) are unobservable

Models, notation, and assumptions

Assumption: The aggregated, observed, pool response is the arithmetic average of the individuals biomarker levels

The models for the observed pooled assessments are **Control model:**

$$Y_{j-} = \frac{1}{c_{-}} \sum_{i=1}^{c_{-}} Y_{ij-} = \overline{\mathbf{X}}'_{j-} \boldsymbol{\beta}_{-} + \epsilon_{j-}, \text{ for } j = 1, ..., J_{-}$$

Case model:

$$Y_{j+} = \frac{1}{c_+} \sum_{i=1}^{c_+} Y_{ij+} = \overline{\mathbf{X}}'_{j+} \boldsymbol{\beta}_+ + \epsilon_{j+}, \text{ for } j = 1, ..., J_+$$

where,

$$\square \ \overline{\mathbf{X}}_{j-} = c_-^{-1} \sum_{i=1}^{c_-} \mathbf{X}_{ij-} \text{ and } \overline{\mathbf{X}}_{j+} = c_+^{-1} \sum_{i=1}^{c_+} \mathbf{X}_{ij+}$$

$$\square$$
 $\epsilon_{j-} \stackrel{iid}{\sim} N(0, c_-^{-1} \sigma_-^2)$ and $\epsilon_{j+} \stackrel{iid}{\sim} N(0, c_+^{-1} \sigma_+^2)$

Parameter estimation

Model parameters are estimated as

$$\begin{array}{lcl} \widehat{\boldsymbol{\beta}}_{-} & = & (\overline{\mathbf{X}}'_{-}\overline{\mathbf{X}}_{-})^{-1}\overline{\mathbf{X}}'_{-}\boldsymbol{Y}_{-} \\ \widehat{\boldsymbol{\beta}}_{+} & = & (\overline{\mathbf{X}}'_{+}\overline{\mathbf{X}}_{+})^{-1}\overline{\mathbf{X}}'_{+}\boldsymbol{Y}_{+} \\ \widehat{\sigma}_{-}^{2} & = & c_{-}(J_{-}-p)^{-1}\boldsymbol{Y}'_{-}(\boldsymbol{I}-\boldsymbol{H}_{-})\boldsymbol{Y}_{-} \\ \widehat{\sigma}_{+}^{2} & = & c_{+}(J_{+}-p)^{-1}\boldsymbol{Y}'_{+}(\boldsymbol{I}-\boldsymbol{H}_{+})\boldsymbol{Y}_{+} \end{array}$$

where

$$\overline{\mathbf{X}}_{-} = (\overline{\mathbf{X}}_{1-}, ..., \overline{\mathbf{X}}_{J-})'$$
 and $\overline{\mathbf{X}}_{+} = (\overline{\mathbf{X}}_{1+}, ..., \overline{\mathbf{X}}_{J++})'$

$$\mathbf{Q} \ \mathbf{Y}^- = (Y_1^-, ..., Y_{J_{--}})' \text{ and } \mathbf{Y}^+ = (Y_1^+, ..., Y_{J_{++}})'$$

$$\label{eq:hammadef} \blacksquare \ \boldsymbol{H}_- = \overline{\mathbf{X}_-} (\overline{\mathbf{X}}_-' \overline{\mathbf{X}}_-)^{-1} \overline{\mathbf{X}}_-' \ \text{and} \ \boldsymbol{H}_+ = \overline{\mathbf{X}}_+ (\overline{\mathbf{X}}_+' \overline{\mathbf{X}}_+)^{-1} \overline{\mathbf{X}}_+'$$

 \Box *I* is the identity matrix

Parameter estimation

Under our modeling assumptions, it is easy to show that

$$\begin{split} \widehat{\boldsymbol{\beta}}_{-} &\sim N\left(\boldsymbol{\beta}_{-}, c_{-}^{-1}\sigma_{-}^{2}(\overline{\mathbf{X}}_{-}^{\prime}\overline{\mathbf{X}}_{-})^{-1}\right) \\ \widehat{\boldsymbol{\beta}}_{+} &\sim N\left(\boldsymbol{\beta}_{+}, c_{+}^{-1}\sigma_{+}^{2}(\overline{\mathbf{X}}_{+}^{\prime}\overline{\mathbf{X}}_{+})^{-1}\right) \end{split}$$

and

$$\frac{(J_- - p)\widehat{\sigma}_-^2}{\sigma_-^2} \sim \chi_{J_- - p}^2$$
$$\frac{(J_+ - p)\widehat{\sigma}_+^2}{\sigma_-^2} \sim \chi_{J_+ - p}^2$$

Consequently, it is possible to conduct typical regression diagnostics, hypothesis tests, and inference

- \Box Let $\theta = (\beta_+, \beta_-, \sigma_+^2, \sigma_-^2)'$ denote the model parameters
- \Box Let $\widehat{\boldsymbol{\theta}} = (\widehat{\boldsymbol{\beta}}_+, \widehat{\boldsymbol{\beta}}_-, \widehat{\sigma}_+^2, \widehat{\sigma}_-^2)'$ denote their estimates

Measure of discrimination

Covariate adjusted sensitivities and specificities:

$$S_e(\mathbf{X}, t, \boldsymbol{\theta}) = \Phi\left(\frac{\mathbf{X}'\boldsymbol{\beta}_+ - t}{\sigma_+}\right) \text{ and } S_p(\mathbf{X}, t, \boldsymbol{\theta}) = \Phi\left(\frac{t - \mathbf{X}'\boldsymbol{\beta}_-}{\sigma_-}\right)$$

Covariate adjusted Youden index:

$$\mathrm{YI}(\mathbf{X}, \boldsymbol{\theta}) = \sup_{t \in \mathbb{R}} \left\{ \Phi\left(\frac{\mathbf{X}'\boldsymbol{\beta}_{+} - t}{\sigma_{+}}\right) + \Phi\left(\frac{t - \mathbf{X}'\boldsymbol{\beta}_{-}}{\sigma_{-}}\right) - 1 \right\}$$

Covariate adjusted optimal cut point:

$$t_0(\mathbf{X}, \boldsymbol{\theta}) = \underset{t \in \mathbb{R}}{\operatorname{argmax}} \left\{ \Phi\left(\frac{\mathbf{X}'\boldsymbol{\beta}_+ - t}{\sigma_+}\right) + \Phi\left(\frac{t - \mathbf{X}'\boldsymbol{\beta}_-}{\sigma_-}\right) - 1 \right\}$$

Covariate adjusted AUC:

$$\mathrm{AUC}(\mathbf{X}, \boldsymbol{\theta}) = \Phi\left(\frac{\mathbf{X}'\boldsymbol{\beta}_{+} - \mathbf{X}'\boldsymbol{\beta}_{-}}{\sqrt{\sigma_{+}^{2} + \sigma_{-}^{2}}}\right)$$

Estimation and inference

Estimates of the covariate adjusted Youden index, optimal cutpoint, and AUC can be obtained as

$$YI(\mathbf{X}, \widehat{\boldsymbol{\theta}}), \quad t_0(\mathbf{X}, \widehat{\boldsymbol{\theta}}), \quad AUC(\mathbf{X}, \widehat{\boldsymbol{\theta}})$$

Further, we establish that at a given predictor level X

$$\sqrt{J}\{\widehat{YI}(\mathbf{X}, \widehat{\boldsymbol{\theta}}) - YI(\mathbf{X}, \boldsymbol{\theta})\} \xrightarrow{d} N(0, \Sigma_{YI})$$

$$\sqrt{J}\{\widehat{t}_0(\mathbf{X}, \widehat{\boldsymbol{\theta}}) - t_0(\mathbf{X}, \boldsymbol{\theta})\} \xrightarrow{d} N(0, \Sigma_{t_0})$$

$$\sqrt{J}\{\widehat{AUC}(\mathbf{X}, \widehat{\boldsymbol{\theta}}) - AUC(\mathbf{X}, \boldsymbol{\theta})\} \xrightarrow{d} N(0, \Sigma_{AUC})$$

- \Box The above expressions assume that $J_- = J_+ = J$
- \Box Closed form expressions (along with their finite sample estimators) of the asymptotic variances (i.e., $\Sigma_{\rm YI}$, Σ_{t_0} , and $\Sigma_{\rm AUC}$) were also obtained

Estimation and inference

To simultaneously assess a biomarker across the entire covariate space we derive asymptotic $100(1-\alpha)\%$ confidence bands for $AUC(\mathbf{X}, \boldsymbol{\theta})$; i.e., the sets $C(\mathbf{X})$ can be constructed such that

$$\operatorname{pr} \left\{ \operatorname{AUC}(\mathbf{X}, \boldsymbol{\theta}) \in C(\mathbf{X}) \text{ for all } \mathbf{X} \right\} = 1 - \alpha.$$

Sets of this form can be constructed as

$$C(\mathbf{X}) = \left[\Phi\left(\frac{\mathbf{X}'(\hat{\boldsymbol{\beta}}^+ - \hat{\boldsymbol{\beta}}^-)}{\sqrt{\hat{\sigma}_+^2 + \hat{\sigma}_-^2}} - \sqrt{\chi_{p,1-\alpha}^2}\sqrt{\hat{\Sigma}_{\mathrm{AUC}^*}}\right) \,,\, \Phi\left(\frac{\mathbf{X}'(\hat{\boldsymbol{\beta}}^+ - \hat{\boldsymbol{\beta}}^-)}{\sqrt{\hat{\sigma}_+^2 + \hat{\sigma}_-^2}} + \sqrt{\chi_{p,1-\alpha}^2}\sqrt{\hat{\Sigma}_{\mathrm{AUC}^*}}\right)\right],$$

where

- \square $\chi^2_{p,1-\alpha}$ denotes the $1-\alpha$ th quantile of a chi-squared distribution with p degrees of freedom
- \square $\widehat{\Sigma}_{AUC^*}$ is an asymptotic variance estimator whose explicit form is provided in our manuscript

Simulation study

Simulation settings:

Control model:
$$Y_{k-} = \mathbf{X}'_{k-} \boldsymbol{\beta}_- + \epsilon_{k-}$$
 for $k = 1, ..., N$,

Case model:
$$Y_{k+} = X'_{k+} \beta_{+} + \epsilon_{k+}$$
 for $k = 1, ..., N$,

- $\mathbf{L} \mathbf{X}_{k+} = (1, X_{k1+})' \text{ and } X_{k1+} \sim N(225, 40^2)$
- $\mathbf{X}_{k-} = (1, X_{k1-})' \text{ and } X_{k1-} \sim N(205, 40^2)$
- \square $\epsilon_{k+} \sim N(0, 2.15^2)$, and $\epsilon_{k-} \sim N(0, 1.35^2)$
- $\ \square \ \beta_+ = (1.750, 0.015)' \ {\rm and} \ \beta_- = (3.000, -0.005)'$
- □ Sample sizes: $N \in \{40, 80, 160\}$
- \Box Pool sizes: $c_{-} = c_{+} = c \in \{1, 2, 4\}$
- ☐ Two pooling schemes: Random pooling (RP) and homogeneous pooling (HP)
- \square Replications: For each (c, N) combination and pooling scheme 10,000 data sets were generated and analyzed

Simulation study

- \square Top to bottom: $t_0(\mathbf{X}, \boldsymbol{\theta})$, $\mathrm{YI}(\mathbf{X}, \boldsymbol{\theta})$, and $\mathrm{AUC}(\mathbf{X}, \boldsymbol{\theta})$
- \Box Left to right: N=40, 80, and 160

Simulation study

- \square Top to bottom: $t_0(\mathbf{X}, \boldsymbol{\theta})$, $\mathrm{YI}(\mathbf{X}, \boldsymbol{\theta})$, and $\mathrm{AUC}(\mathbf{X}, \boldsymbol{\theta})$
- \Box Left to right: N=40, 80, and 160

Data application

Interleukin-6 (IL-6) is a pro-inflammatory cytokine that has
been related to a host of biological functions, including
coronary heart disease
High levels of cholesterol are also associated with coronary
heart disease
This analysis considers 40 cases who had recently had a
myocardial infarction (MI), and 40 controls
Cholesterol and IL-6 were measured on all 80 subjects
individually
IL-6 was also assessed on pools of size two and four under
RP
For comparative purposes, we also consider artificially
implementing HP
A first order linear model was fit to the case and control
data separately, using cholesterol as the only predictor
variable

Results of data analysis: Observed data

Results of data analysis: Artificial HP

Discussion and future work

□ Developed regression methodology for pooled biomarker measurements ☐ The proposed methodology allows one to estimate and perform inference about several common covariate dependent measures of discrimination; i.e., ROC, YI, AUC, and t_0 ☐ Through additional simulation studies, we have discovered that our proposed techniques are relatively robust to departures from normality ☐ Future work includes, but is not limited to: ☐ Extending the methodology proposed here to the class of generalized linear models □ Develop nonparametric/semiparametric alternatives ☐ Generalize to allow for the analysis of multiple biomarkers simultaneously □ Account for common issues; e.g., measurement error, limits of detection, etc.