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Biological marker (or biomarker) evaluation

o The motivation behind evaluating new biomarkers:
o Identify new markers that can be used to asses exposures
o Identify new markers for disease detection

o In 2011, 70% of the original articles in Clinical Chemistry,
were focused on biomarker evaluation; Boyd et al. (2012)

o HIV; Kanekar (2010)
o Cancer; Borges et al. (2013)
o Cardiovascular disease; Sabatine et al. (2012)

...
o This area of epidemiological research is often limited due to

the cost associated with measuring biomarker levels
o Caudill (2012) reported a cost of $1400 per specimen to

obtain a single analytical measurement of 61
polychlorinated and 13 polybrominated compounds

o If you know me, you would know how I would solve this
problem, more on this shortly
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Biomarker evaluation: Measures of discriminatory ability

o Several common measures:
o Receiver operating characteristic (ROC) curve
o Area under the ROC curve (AUC)
o Youden Index (YI)

o Let fC− and fC+ denote the probability distribution
functions for the biomarker levels associated with cases and
controls, respectively

o Consider a test that diagnoses a subject as positive if their
biomarker level is above a threshold t

Sensitivity: Se(t) = P (test + |truly+) =

∫ ∞
t

fC+(c)dc

Specificity: Sp(t) = P (test− |truly−) =

∫ t

∞
fC−(c)dc
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Measures of discriminatory ability

o fC+ (fC−) denoted by the red (black) curve
o t denoted by the yellow line
o Se(t) (Sp(t)) denoted by the dark (light) blue shaded region
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Receiver operating characteristic (ROC) curve

Construction: Plot Se(t) versus 1− Sp(t), for all t
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o If the ROC curve (red) is “far" from the chance line (black)
then the biomarker is a good discriminator

o If the ROC curve (red) is “close" to the chance line (black)
then the biomarker is not a useful discriminator
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Area under the ROC curve (AUC)

Calculation: AUC = P (C+ > C−), where C+ ∼ fC+ , C− ∼ fC−
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o If AUC≈ 1, then the biomarker is a good discriminator
o If AUC≈ 0.5, then the biomarker is not a useful

discriminator
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Youden index (YI): Youden (1950)

Calculation: YI = supt∈R{Se(t) + Sp(t)− 1}
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o YI is the maximum vertical distance (blue) between the
ROC curve (red) and the chance line (black)

o If YI≈ 1(0), then the biomarker is an (in)effective
discriminator
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Pooled biomarker evaluation

o Pooling: A means to reduce testing cost
o Physically combine several specimens into a pool and then

measure the pool for the characteristic of interest
o If one uses pools of size c, then N specimens can be

assessed at the cost of J = N/c measurements; i.e. at a
drastic reduction in testing cost

o Dorfman (1943) originally proposed pool (group) testing
o Group testing has been used in many venues:

o Infectious disease screening:
o HIV, HBV, and HCV; Stramer et al. (2013)
o Chlamydia and gonorrhea; Lindan et al. (2005)

o Identifying lead compounds in drug discovery; Remlinger et
al. (2006)

o Screening for viral agents in the case of bioterrorism;
Schmidt et al. (2005)

o Detecting rare mutations in genetics; Gastwirth (2000)
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Pooled biomarker evaluation

o Several authors have investigated the use of pooled
assessments to evaluate the discriminatory ability of a
biomarker of interest

o Faraggi et al. (2003)
o Liu and Schisterman (2003)
o Mumford et al. (2006)
o Bondell et al. (2007)
o Vexler et al. (2008)
o Malinovsky et al. (2012)

o Regretfully, all of these techniques have failed to
acknowledge confounding factors (e.g., age, sex, gender,
race, etc.)

o The focus of this work is to develop methods of estimating
covariate dependent ROC curves, AUCs, and Youden
indices based on pooled biomarker assessments
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Models, notation, and assumptions

Control model:

Yij− = X′ij−β− + εij−, for i = 1, ..., c− and j = 1, ..., J−

Case model:

Yij+ = X′ij+β+ + εij+, for i = 1, ..., c+ and j = 1, ..., J+

where,
o Yij− (Yij+) are the biomarker levels of the controls (cases)
o Xij− (Xij+) is a p-dimensional vector of covariates
o β− (β+) is a vector of regression parameters

o εij−
iid∼ N(0, σ2−) and εij+

iid∼ N(0, σ2+)

Note: When pooled assessments are being made the individual
level biomarker levels (i.e., Yij− and Yij+) are unobservable

Christopher McMahan Covariate adjusted analysis of pooled assessments



Models, notation, and assumptions

Assumption: The aggregated, observed, pool response is the
arithmetic average of the individuals biomarker levels

The models for the observed pooled assessments are
Control model:

Yj− =
1

c−

c−∑
i=1

Yij− = X
′
j−β− + εj−, for j = 1, ..., J−

Case model:

Yj+ =
1

c+

c+∑
i=1

Yij+ = X
′
j+β+ + εj+, for j = 1, ..., J+

where,
o Xj− = c−1−

∑c−
i=1Xij− and Xj+ = c−1+

∑c+
i=1Xij+

o εj−
iid∼ N(0, c−1− σ2−) and εj+

iid∼ N(0, c−1+ σ2+)
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Parameter estimation

Model parameters are estimated as

β̂− = (X
′
−X−)−1X

′
−Y −

β̂+ = (X
′
+X+)−1X

′
+Y +

σ̂2− = c−(J− − p)−1Y ′−(I −H−)Y −

σ̂2+ = c+(J+ − p)−1Y ′+(I −H+)Y +

where
o X− = (X1−, ...,XJ−)′ and X+ = (X1+, ...,XJ++)′

o Y − = (Y −1 , ..., YJ−−)′ and Y + = (Y +
1 , ..., YJ++)′

o H− = X−(X
′
−X−)−1X

′
− and H+ = X+(X

′
+X+)−1X

′
+

o I is the identity matrix
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Parameter estimation

Under our modeling assumptions, it is easy to show that

β̂− ∼ N
(
β−, c

−1
− σ2−(X

′
−X−)−1

)
β̂+ ∼ N

(
β+, c

−1
+ σ2+(X

′
+X+)−1

)
and

(J− − p)σ̂2−
σ2−

∼ χ2
J−−p

(J+ − p)σ̂2+
σ2+

∼ χ2
J+−p

Consequently, it is possible to conduct typical regression
diagnostics, hypothesis tests, and inference

o Let θ = (β+,β−, σ
2
+, σ

2
−)′ denote the model parameters

o Let θ̂ = (β̂+, β̂−, σ̂
2
+, σ̂

2
−)′ denote their estimates
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Measure of discrimination

Covariate adjusted sensitivities and specificities:

Se(X, t,θ) = Φ

(
X′β+ − t

σ+

)
and Sp(X, t,θ) = Φ

(
t−X′β−

σ−

)
Covariate adjusted Youden index:

YI(X,θ) = sup
t∈R

{
Φ

(
X′β+ − t

σ+

)
+ Φ

(
t−X′β−

σ−

)
− 1

}
Covariate adjusted optimal cut point:

t0(X,θ) = argmax
t∈R

{
Φ

(
X′β+ − t

σ+

)
+ Φ

(
t−X′β−

σ−

)
− 1

}
Covariate adjusted AUC:

AUC(X,θ) = Φ

X′β+ −X′β−√
σ2+ + σ2−
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Estimation and inference

Estimates of the covariate adjusted Youden index, optimal
cutpoint, and AUC can be obtained as

YI(X, θ̂), t0(X, θ̂), AUC(X, θ̂)

Further, we establish that at a given predictor level X
√
J{ŶI(X, θ̂)−YI(X,θ)} d→ N(0,ΣYI)
√
J{t̂0(X, θ̂)− t0(X,θ)} d→ N(0,Σt0)

√
J{ÂUC(X, θ̂)−AUC(X,θ)} d→ N(0,ΣAUC)

o The above expressions assume that J− = J+ = J

o Closed form expressions (along with their finite sample
estimators) of the asymptotic variances (i.e., ΣYI, Σt0 , and
ΣAUC) were also obtained
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Estimation and inference

To simultaneously assess a biomarker across the entire covariate
space we derive asymptotic 100(1− α)% confidence bands for
AUC(X,θ); i.e., the sets C(X) can be constructed such that

pr {AUC(X,θ) ∈ C(X) for all X} = 1− α.

Sets of this form can be constructed as

C(X) =

Φ

X′(β̂
+ − β̂

−
)√

σ̂2
+ + σ̂2

−

−
√
χ2
p,1−α

√
Σ̂AUC*

 , Φ

X′(β̂
+ − β̂

−
)√

σ̂2
+ + σ̂2

−

+
√
χ2
p,1−α

√
Σ̂AUC*


 ,

where
o χ2

p,1−α denotes the 1− αth quantile of a chi-squared
distribution with p degrees of freedom

o Σ̂AUC* is an asymptotic variance estimator whose explicit
form is provided in our manuscript
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Simulation study

Simulation settings:

Control model: Yk− = X′k−β− + εk− for k = 1, ...., N,

Case model: Yk+ = X′k+β+ + εk+ for k = 1, ...., N,

o Xk+ = (1, Xk1+)′ and Xk1+ ∼ N(225, 402)

o Xk− = (1, Xk1−)′ and Xk1− ∼ N(205, 402)

o εk+ ∼ N(0, 2.152), and εk− ∼ N(0, 1.352)

o β+ = (1.750, 0.015)′ and β− = (3.000,−0.005)′

o Sample sizes: N ∈ {40, 80, 160}
o Pool sizes: c− = c+ = c ∈ {1, 2, 4}
o Two pooling schemes: Random pooling (RP) and

homogeneous pooling (HP)
o Replications: For each (c,N) combination and pooling

scheme 10,000 data sets were generated and analyzed
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Simulation study
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o Top to bottom: t0(X,θ), YI(X,θ), and AUC(X,θ)

o Left to right: N=40, 80, and 160
Christopher McMahan Covariate adjusted analysis of pooled assessments



Simulation study

100 150 200 250 300

0.
90

0.
92

0.
94

0.
96

0.
98

1.
00

X
E

st
im

at
ed

 P
oi

nt
−

w
is

e 
C

ov
er

ag
e

100 150 200 250 300

0.
80

0.
85

0.
90

0.
95

1.
00

X

E
st

im
at

ed
 P

oi
nt

−
w

is
e 

C
ov

er
ag

e

100 150 200 250 300

0.
90

0.
92

0.
94

0.
96

0.
98

1.
00

X

E
st

im
at

ed
 P

oi
nt

−
w

is
e 

C
ov

er
ag

e

100 150 200 250 300

0.
90

0.
92

0.
94

0.
96

0.
98

1.
00

X

E
st

im
at

ed
 P

oi
nt

−
w

is
e 

C
ov

er
ag

e

100 150 200 250 300

0.
80

0.
85

0.
90

0.
95

1.
00

X
E

st
im

at
ed

 P
oi

nt
−

w
is

e 
C

ov
er

ag
e

100 150 200 250 300

0.
90

0.
92

0.
94

0.
96

0.
98

1.
00

X

E
st

im
at

ed
 P

oi
nt

−
w

is
e 

C
ov

er
ag

e

100 150 200 250 300

0.
90

0.
92

0.
94

0.
96

0.
98

1.
00

X

E
st

im
at

ed
 P

oi
nt

−
w

is
e 

C
ov

er
ag

e

100 150 200 250 300

0.
80

0.
85

0.
90

0.
95

1.
00

X

E
st

im
at

ed
 P

oi
nt

−
w

is
e 

C
ov

er
ag

e

100 150 200 250 300

0.
90

0.
92

0.
94

0.
96

0.
98

1.
00

X
E

st
im

at
ed

 P
oi

nt
−

w
is

e 
C

ov
er

ag
e

c=1
c=2
c=4

o Top to bottom: t0(X,θ), YI(X,θ), and AUC(X,θ)

o Left to right: N=40, 80, and 160
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Data application

o Interleukin-6 (IL-6) is a pro-inflammatory cytokine that has
been related to a host of biological functions, including
coronary heart disease

o High levels of cholesterol are also associated with coronary
heart disease

o This analysis considers 40 cases who had recently had a
myocardial infarction (MI), and 40 controls

o Cholesterol and IL-6 were measured on all 80 subjects
individually

o IL-6 was also assessed on pools of size two and four under
RP

o For comparative purposes, we also consider artificially
implementing HP

o A first order linear model was fit to the case and control
data separately, using cholesterol as the only predictor
variable
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Results of data analysis: Observed data
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Results of data analysis: Artificial HP
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Discussion and future work

o Developed regression methodology for pooled biomarker
measurements

o The proposed methodology allows one to estimate and
perform inference about several common covariate
dependent measures of discrimination; i.e., ROC, YI, AUC,
and t0

o Through additional simulation studies, we have discovered
that our proposed techniques are relatively robust to
departures from normality

o Future work includes, but is not limited to:
o Extending the methodology proposed here to the class of

generalized linear models
o Develop nonparametric/semiparametric alternatives
o Generalize to allow for the analysis of multiple biomarkers

simultaneously
o Account for common issues; e.g., measurement error, limits

of detection, etc.
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