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Multiple testing and reproducibility problem

In modern big data situations, such as in microarray
analysis, one source of lack of reproducibility is the
voluminous number of false positives/false discoveries that
occur.
This leads to later experiments that do not confirm the
earlier findings, resulting in much skepticism towards some
of the big data analytic being used.
We propose an approach that can be used in a study with
a large number of observations but where only a small
number of real “discoveries” or “significant cases” are
expected to be found.
This method is based on a simple two point mixture
contamination model where one component corresponds
to the baseline/background information and the second to
the sources which are the real discoveries (the
contamination).
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The Mixture Model

Start with a basic model for the density of the population
under study, viz.

f (x) = p0f0(x) + p1f1(x)

with p0 + p1 = 1. Where f0 corresponds to the background
density and f1 is the contamination density or the density of
the signal that one wants to find.
Consider the mixture contamination model with the general
testing problem H0 : p1 = p∗1 vs. H1 : p1 > p∗1.
In many problems, the weight p∗1 is very small (p∗1 ≈ 0) and
the problem may be euphemistically referred to as a
needle in a haystack (NIHP), while, if p∗1 > 0, we refer to it
as looking for needles (LFN). For the present discussion
we will use the LFN model to develop a method to tackle
the large scale multiple testing problem
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Mixture model in multiple testing

In multiple testing scenario the entire group of observation
can be viewed as a mixture of null (baseline) and non-null
(contamination) distributions.
Vera et al. [8] advocates using the LMP test for

H0 : p1 = p∗1 vs. H1 : p1 > p∗1

in order to screen for contamination (extreme values).
Efron [2] uses Bayesian two-class (null and non-null)
model with:
Prior probabilities:

p0 = P(null) and p1 = P(non-null)

Population densities:

f0 = null density and f1 = non-null density.

Then used posterior probabilities to identify extreme cases.
4 / 32



Bayes Approach

For the identification of significant cases one can use the
assignment functions:

A0(x) =
p̂0f0(x)

f̂ (x)

A1(x) =
p̂1f1(x)

f̂ (x)

where p̂0 and p̂1 are estimates of p0 and p1 respectively,
with f̂ (x) = p̂0f0(x) + p̂1f1(x).
For a two class Baysian model assignment function A0(x)
gives the local false discovery rate (fdr ) (Efron [2, 3, 4]).

fdr(x) ≡ P(null|x) =
p0f0(x)

f (x)
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Tail-area FDR

Recently, the tail area “False Discovery Rate” (FDR) has
been promoted as an useful tool for multiple testing
problems.
For example for a left-tail region with observed value x ,

FDR(x) = P(null |X ≤ x) =
p0F0(x)

F (x)
.

In general for a tail region is given by set B, the tail area
FDR is given by

FDR(B) ≡ P(null |X ∈ B) =
p0
∫

B dF0∫
B dF

If F is estimated by the empirical cdf then it can be shown
that controlling tail-area FDR is equivalent to
Benjamini-Hochberg procedure of controlling over-all false
discovery rate in the entire study.
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Relation between FDR and fdr

It can be shown that the relationship between the tail area
false discovery rate FDR(A), for a set A, to local fdr(x) is

FDR(A) = E(fdr(X )|X ∈ A)

For a Baysian two-class mixture model, cases with fdr (or
FDR) below a pre-determined cutoff point can be
considered as true discoveries (Efron).
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Our Approach

We propose a modification of Vera et al. and Efron’s approach.
In most studies of multiple testing situations with a large
data, the entire data set is first used to fit a model. Then
the same data is used to detect significant cases based on
that fitted model.
We postulate that, using a data for model fitting and then
using the very same data for identifying significant cases,
may distort the real picture.
We propose a mixture-model based method using a cross
validation type data partitioning at the beginning. Where
one part of the data is used for model building and the
other part is for anomaly detection using an updated form
of FDR.
This new approach not only avoids over-fitting, but also
provides some insight into the inter-relation between
various significant observations.
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Proposed Analysis Method

The analysis is done in the following the stages:

(i) The data is first divided into two (equal) parts, viz.
training data and verification data sets. Using
only the training data we fit a mixture
contamination model

f (x) = p∗0f0(x) + p∗1f1(x)

that we think captures the baseline and the
extreme values best (empirical null).

Then we proceed to identify significant cases based on the
verification data set alone as follows:
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Proposed Analysis Method (contd.)

(ii) We use the LMP test for
H0 : p1 = p∗1 vs. H1 : p1 > p∗1 as a screening test
on the verification data. Given the observed LMP
test from the verification data, we then ‘update’ the
fitted model obtained from the training data.

(iii) Finally we use the updated model to calculate the
FDR associated with each observation in the
verification data. The observations, with FDR
below a pre-determined cutoff point, are identified
as the significant cases.

(iv) The entire process (stages i, ii, iii) is repeated
several times with different partitioning of the
training and the verification subsets. For each
repetition a set of significant cases are identified.
The most frequently identified significant cases
are considered as potential “true discoveries”.
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LMP Test for screening

The “update” in the stage (ii) of the analysis is based on a
conditional asymptotic distribution of the observations;
where the condition is given by the observed LMP test
statistic.
We start with setup: let X1, . . . ,Xn be i.i.d. with density
f (x) = p0f0(x) + p1f1(x), with p1 ∈ (0,1) and p0 + p1 = 1.
For testing

H0 : p1 = p∗1 vs H1 : p1 > p∗1,

the generalized Neyman-Pearson Lemma shows that the
LMP test statistic is

Tn =
n∑

i=1

f1(Xi)− f0(Xi)

fH0(Xi)
(1)

Here fH0 is the common pdf of X1, . . . ,Xn under H0; i.e.
fH0(x) = p∗0f0(x) + p∗1f1(x) with p∗0 + p∗1 = 1.
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Exponential tilting

Define Yi = f1(Xi )−f0(Xi )
fH0

(Xi )
≡ h(Xi).

Since Tn ≡
∑n

i=1 Yi ≡
∑n

i=1 h(Xi) is a sum of i.i.d. mean 0
r.v’s under H0, when p∗1 > 0, Tn/n

a.s.→ 0. Positive values of
Tn/n are the relevant values for rejecting H0.
Suppose S = {θ ≥ 0 : E

(
eθY ) <∞} and S0 its interior.

For θ ∈ S0, we define families with the following distribution
functions:

Fθ(y ′) =

∫ y ′

−∞
eθy fY (y)dy/E

(
eθY

)
(2)

Gθ(x ′) =

∫ x ′

−∞
eθh(x)fH0(x)dx/E

(
eθh(X)

)
. (3)

These are the families generated by exponentially tilting fY
and fH0 , respectively.
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“Update” by exponentially tilting

Define m̄(θ) =
E
(
YeθY )

E
(
eθY

) and the set M = {m̄(θ) : θ ∈ S0}.

Proposition

Let S0 6= ∅. Suppose, I = (c,d) with 0 < c < d where c ∈ M. If
θc is chosen such that c = m̄

(
θc
)
, then, as n→∞,

P
(

Yi ≤ yi , i = 1, . . . ,m | Tn

n
∈ I
)

d→
m∏

i=1

Fθc (yi) (4)

P
(

Xi ≤ xi , i = 1, . . . ,m | Tn

n
∈ I
)

d→
m∏

i=1

Gθc (xi) (5)

We first fit fH0 (empirical null) using the training data. Then use
the verification data to get the LMP test T̂n and update the
empirical null fH0 by exponentially tilting it with tilt parameter θ̂
s.t m̄(θ̂) = T̂n/n.
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Updated FDR

We update the baseline and contamination distribution by
exponentially tilting:

f ∗θc ,0(x) =
eθc ·h(x)f0(x)

E0
(
eθc ·h(X)

) , f ∗θc ,1(x) =
eθc ·h(x)f1(x)

E1
(
eθc ·h(X)

) , (6a)

p∗1 (θc) =
p∗1E1

(
eθc ·h(X)

)
EH0

(
eθc ·h(X)

) , p∗0 (θc) =
p∗0E0

(
eθc ·h(X)

)
EH0

(
eθc ·h(X)

) . (6b)

Thus, FDR(A) | Tn

n
∈ (c,d) is given by:

Proposition

E
[
fdr(X ) | X ∈ A,

Tn

n
∈ (c,d)

]
≈
∫

A

p∗0 (θc) f ∗θc ,0(x)dx
Gθc (A)

We use this updated FDR to identify extreme cases from the
verification data set.
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An application

Our proposed analysis method is specially useful for
microarray studies where a large number of genes are
studied but only a handful of the genes are expected to be
significantly differentially expressed and scientists look for
a regulator gene associated with a specific disease or an
interactome of genes that may control the disease.
We used our method to a prostate cancer study data
where 52 prostate cancer patients and 50 healthy people
were subjects and 6033 gene expressions were studied.
The main goal is to identify potential regulator genes.
We considered two sample t-test statistics for each gene
and looked at xi = P(t < ti) where ti is the observed t-test
statistics from the i th gene. Our main model is
f (xi) = p0f0(xi) + p1f1(xi), where f0 is baseline
(Uniform(0,1) or some version of it) and f1 is the
contamination (Beta-distribution or some version of it).
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Figure 1: A two-point mixture model fitting the left tail probability x obtained using a
training data.
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Empirical Null

First we fitted a mixture of U(0,1) and Beta(α, β)
distributions f (x) = p̃0 f̃0(x) + p̃1 f̃1(x) to the t-statistics tail
area data.
In order to capture the tail behavior for the contamination
distribution we re-wrote the fit as: f̃1(x) = f0,1(x) + f1,1(x),
where

f0,1(x) = f̃1(x)I
[
f̃1(x) ≤ 1

]
+ 1 · 1I

[
f̃1(x) > 1

]
f1,1(x) = 0 · I

[
f̃1(x) ≤ 1

]
+ (1− f̃1(x)) · I

[
f̃ (x)1 > 1

]
Let A11 =

∫
R f1,1(x)dx . Define f ∗1 (x) = 1

A11
f1,1(x).

Define p∗1 = p̃1 · A11 and p∗0 = 1− p∗1.
And f ∗0 (x) = p̃0

p∗0
f̃0(x) + p̃1

p∗0
f0,1(x)

Then the fitted model can be written as:

fH0(x) = p∗0f ∗0 (x) + p∗1f ∗1 (x)

Here f ∗0 can be thought as an “empirical null”.
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LMP, update and anomaly detection

From the verification data set we got T̂n =
n∑

i=1

f∗1 (xi )−f∗0 (xi )

fH0
(xi )

.

Then chose the tilt parameter θ̂ such that m̄(θ̂) = T̂n
n .

We used this θ̂ to exponentially tilt f ∗0 and f ∗1 and update p∗0
and p∗1.
Then calculated updated FDR for each gene using the
tilted distributions and updated weights.
Genes with FDR < 0.1 were considered extreme or
significant or true discoveries.
The steps were repeated for 100 cross-validation type
partitions. 69 partitions showed significant genes (H0 was
rejected). 31 partitions did not produce any significant
cases (H0 accepted). These 69 partitions identified total 73
significant genes.
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Significant genes from 100 cross-validation

ID Gene freq med.tailp avg.tailp sd.tailp
1 610 14 0.99985 0.99876 0.00393
2 1720 12 0.99964 0.99754 0.00628
3 4331 10 0.00122 0.00680 0.01322
4 914 10 0.99929 0.99698 0.00594
5 579 6 0.99864 0.99296 0.01154
6 1089 5 0.99849 0.99147 0.02054
7 1068 4 0.99848 0.99557 0.00808
8 332 4 0.99913 0.99661 0.00829
9 4546 4 0.00104 0.00574 0.01273
10 2856 3 0.00705 0.02427 0.04575
11 1077 2 0.99754 0.98979 0.02306
12 1130 2 0.99702 0.98905 0.01955
13 1314 2 0.99446 0.98702 0.01870
14 1458 2 0.03666 0.06608 0.07405
15 2945 2 0.00662 0.01907 0.03301
16 3017 2 0.00652 0.02089 0.03409
17 3505 2 0.00690 0.01882 0.02736
18 364 2 0.00070 0.00343 0.00735
19 3647 2 0.99711 0.99087 0.01916
20 3940 2 0.00110 0.00679 0.01516

19 / 32



significant genes

ID Gene freq med.tailp avg.tailp sd.tailp
21 4000 2 0.00518 0.01938 0.04030
22 4316 2 0.00307 0.00907 0.01501
23 4518 2 0.99613 0.98757 0.02382
24 921 2 0.00427 0.01553 0.02844
25 1019 1 0.02609 0.05919 0.08251
26 1097 1 0.98372 0.95464 0.06977
27 1254 1 0.05608 0.10606 0.13399
28 1304 1 0.45729 0.44219 0.25522
29 1329 1 0.98314 0.94902 0.08370
30 1346 1 0.00623 0.01732 0.02315
31 1376 1 0.94766 0.90139 0.11893
32 1507 1 0.98338 0.96269 0.05127
33 1557 1 0.99700 0.99364 0.00971
34 1572 1 0.98078 0.96464 0.04936
35 1589 1 0.00465 0.01368 0.02841
36 2196 1 0.87675 0.83352 0.15338
37 2211 1 0.93297 0.89519 0.11501
38 2562 1 0.94549 0.91661 0.10483
39 2621 1 0.94060 0.90535 0.10385
40 2785 1 0.03247 0.06530 0.08392
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significant genes

ID Gene freq med.tailp avg.tailp sd.tailp
41 2852 1 0.98477 0.96116 0.05833
42 2923 1 0.98263 0.94807 0.07953
43 3200 1 0.98383 0.97065 0.03308
44 324 1 0.07255 0.10029 0.10782
45 3250 1 0.11034 0.18107 0.16665
46 3269 1 0.01113 0.02749 0.04406
47 3282 1 0.99231 0.98366 0.02078
48 3375 1 0.99625 0.98876 0.01913
49 3665 1 0.00334 0.01259 0.02587
50 3746 1 0.02420 0.05999 0.08984
51 3913 1 0.04891 0.08153 0.09197
52 3991 1 0.00386 0.01089 0.01700
53 4013 1 0.99163 0.96972 0.05307
54 4040 1 0.00873 0.02553 0.04489
55 4088 1 0.00244 0.01099 0.02712
56 4104 1 0.00551 0.01658 0.02696
57 4396 1 0.01437 0.03665 0.05615
58 4405 1 0.04284 0.08130 0.09194
59 4417 1 0.06078 0.09663 0.10167
60 4496 1 0.01351 0.03074 0.04737
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significant genes

ID Gene freq med.tailp avg.tailp sd.tailp
61 4500 1 0.01956 0.04209 0.05434
62 4515 1 0.01350 0.03210 0.05167
63 4541 1 0.04966 0.08819 0.10353
64 478 1 0.01699 0.03281 0.04496
65 4997 1 0.97501 0.94558 0.08181
66 5287 1 0.01858 0.03591 0.05126
67 5746 1 0.86325 0.81823 0.17506
68 594 1 0.97485 0.93502 0.09160
69 676 1 0.03004 0.05106 0.06270
70 690 1 0.11505 0.16742 0.14933
71 694 1 0.00514 0.01530 0.02568
72 735 1 0.00318 0.01201 0.02058
73 987 1 0.97621 0.94328 0.08751
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Figure 2: There are 73 significant genes by using the threshold FDR ≤ 0.1 from 100
cross-validations. The node denotes the significant genes and edges denotes the
occurrence of two genes at the same time in a cross-validation. The node size
indicates the frequency of occurrence for that gene and the edge width indicates the
frequency of occurrence of the pair of significant genes at the same time. The genes
with the same color have the same frequency of occurrence.
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Figure 3: The simplified gene network compare to figure 2. It is obtained by deleting
the significant genes in figure 2 with less than 3 edges. 33 significant genes shows in
this simplified gene network.
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Figure 4: The sparse gene network compare to figure 2. It is obtained by deleting the
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simplified gene network.
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Figure 5: Parallel Coordinate Plot of the left tail probabilities of t-statistics for the top
10 significant genes 610, 1720, 4331, 914, 579, 1089, 1068, 332, 4546 and 2856
discovered from 100 cross-validation data. The red solid lines indicate the 69
cross-validations with significant cases screened by FDR ≤ 0.1 and the blue dashed
lines indicate the 31 cross-validations without significant cases. The black solid line
represents the median of left tail probabilities.
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Figure 6: Parallel Coordinate Plot of the left tail probabilities of t-statistics for the top
20 significant genes discovered from the 100 cross-validation data. The red solid lines
indicate the 69 cross-validations with significant cases screened by FDR ≤ 0.1 and the
blue dashed lines indicate the 31 cross-validations without significant cases. The black
solid line represents the median of left tail probabilities.

27 / 32



 

 

610 914 1068 1077 2945 364 4000 921 1254 1376 1589 2621

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Prostate Genes

pv
al

ue
s

Figure 7: Parallel Coordinate Plot of the left tail probabilities of t-statistics for the top
40 significant genes discovered from the 100 cross-validation data. The red solid lines
indicate the 69 cross-validations with significant cases screened by FDR ≤ 0.1 and the
blue dashed lines indicate the 31 cross-validations without significant cases. The black
solid line represents the median of left tail probabilities.
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Concluding Remarks

This approach circumvents over-fitting.
Using different subsets as training and verification data for
each repetition, we balance out other sources of variation
in the data.
The observation(s), that turns out as significant frequently,
can give us an idea about the “regulator(s)” associated
with extreme behavior in the data.
If the same sets of observations get identified as significant
cases again and again, we can get an idea about a
network between them or some hierarchical regulation
pattern that may control the signal.
By using half of the data for model fitting and other half for
anomaly detection we are loosing some power of the test
that can be achieved by the full model.
The screening test and the FDR update are large sample
results. For a handful of multiple tests this approach will
not work well.
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Future Work

We are planning to use similar methods with a discrete
mixture model that can be used for count data.
We need to look into the network of genes revealed by the
repeated cross-validation and try to incorporate the
inter-relation in the model.
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Thank You.
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