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Motivation for Problem

• Coronary artery bypass grafting (CABG) versus percutaneous
coronary intervention (PCI) for patients with coronary artery
disease (CAD)

• Research Question: Based on the measured baseline
covariates what treatment (PCI or CABG, coded as 0 and 1
respectively) should be recommended?

• Data from the ASCERT study–a retrospective study of patients
with 2 or 3 vessel CAD treated with CABG or PCI

• Observational study
• We consider 7,391 patients from a substudy in 54 hospitals
• Primary endpoint survival time
• Baseline covariates measured prior to treatment
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Treatment regime

• This problem can be cast by considering treatment regimes
• A treatment regime is a decision rule which takes an individual’s

baseline information and dictates which treatment to be given
• Formally: Letting X denote the vector of baseline covariates

taking values x ∈ X , then a treatment regime

d : X → (0,1)

I.e., if X = x then patient treated according to regime d receives
• treatment 1 if d(x) = 1
• treatment 0 if d(x) = 0

• Denote by D the class of all treatment regimes. Within this class
which is the optimal regime (i.e., best in some sense)?
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Potential outcomes

• Let T ∗(1) denote the survival time of an arbitrary patient if
(possibly contrary to fact) they received treatment 1; similarly, we
define T ∗(0)

• In the population there is some unobservable distribution of
{X ,T ∗(1),T ∗(0)}

• T ∗(d) = d(X )T ∗(1) + {1− d(X )}T ∗(0), the survival time for
patient treated according to regime d

• We define primary outcome as f{T ∗(d)}
• f{T ∗(d)} = I{T ∗(d) ≥ u}
• f{T ∗(d)} = min{T ∗(d),L}

• The value of d , denoted by V (d) = E [f{T ∗(d)}], the mean
outcome for a population treated according to regime d ; e.g.,
P{T ∗(d) ≥ u} or E [min{T ∗(d),L}]. Note we can also define
V (1) and V (0)
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Goal

• Optimal treatment regime dopt ∈ D satisfies

V (d) ≤ V (dopt ) for all d ∈ D

• Statistical goal: Estimate dopt from data
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Assumptions

• We observe censored survival data (Ui ,∆i ,Ai ,Xi), i = 1, . . . ,N,
• Ui = min(Ti ,Ci ) (i.e., minimum of observed survival time Ti and

censoring time Ci )
• ∆i = I(Ti ≤ Ci ) (failure indicator)
• Ai is assigned treatment indicator
• Xi is vector of baseline covariates

Assumptions
• Observed survival time for patient i , Ti = AiT ∗i (1) + (1−Ai)T ∗i (0)

• C⊥⊥T |X ,A (non-informative censoring)
• A⊥⊥{T ∗(1),T ∗(0)}|X (no unmeasured confounders)
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Optimal treatment regime

• Under the previous assumptions the optimal treatment regime
is given by

dopt (x) = I[E{f (T )|A = 1,X = x} ≥ E{f (T )|A = 0,X = x}]

• or equivalently
dopt (x) = I{CF (x) ≥ 0},

where the contrast function
CF (x) = E{f (T )|A = 1,X = x} − E{f (T )|A = 0,X = x}.
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Optimal treatment regime

• Regression estimator: An obvious strategy is to develop a
model for the conditional distribution of T given A and X say, with
parameters θ; derive E{f (T )|A,X} = Q(X ,A; θ); estimate θ from
the data; then

d̂opt (x) = I{Q(x ,1; θ̂) ≥ Q(x ,0; θ̂)}

• or equivalently
d̂opt (x) = I{ĈF (x , θ̂) ≥ 0},

where ĈF (x) = Q(x ,1; θ̂)−Q(x ,0; θ̂)
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Regression estimator

• E.g., consider proportional hazards regression model:

λ(t |A,X ) = λ0(t) exp{γ0 + γT
1 X − A(η0 + ηT

1 X )}

• For such a model d̂opt (x) = I(η̂0 + η̂T
1 x ≥ 0) (true for any function

f (·))
• Difficulty: If model is misspecified then the regime d̂opt may not

be that good
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Restricted regimes

• Searching for an optimal treatment regime among all possible
regimes may be too ambitious

• For practical reasons and ease of interpretability we may want to
consider a class of restricted regimes Dη, indexed by a finite
parameter η; e.g.,

• Dη = I(η0 + ηT
1 x ≥ 0) (hyperplanes)

• Dη = I(x1 < η1, x2 < η2) (rectangular regions)

• The optimal restricted regime dopt
η = d(x , ηopt ), is such that

V (dη) ≤ V (dηopt ) for all η
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Restricted regimes

• We note that the proportional hazards model with interaction
terms led to Dη in the form of hyperplanes

• Also note that the regression estimator d̂opt (x) = I(η̂0 + η̂T
1 x ≥ 0)

may be a poor estimator of dopt
η within the class Dη; i.e., (η̂0, η̂1)

may be a poor estimator of (ηopt
0 , ηopt

1 ) if the model is misspecified
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Value search estimator

• For any regime d find a robust estimator for
V (d) = E [f{T ∗(d)}], say V̂ (d)

• Directly search for optimal estimator within the class Dη

η̂opt = arg maxηV̂ (dη)
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Complete-case estimator

• If we were able to observe the potential outcomes
{T ∗i (d), i = 1, . . . ,N}, then a nonparametric unbiased estimator
for V (d) = E [f{T ∗(d)}] would be

V̂ (d) = N−1
N∑

i=1

f{T ∗i (d)}

• Of course, we cannot observe potential outcomes and our
estimator must be based on the observed data
(Ui ,∆i ,Xi), i = 1, . . . ,N.

• Using missing data analogy we propose the augmented inverse
probability weighted complete case estimator (AIPWCC)
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AIPWCC estimator

We first define the following notation:

• Propensity score π(X ) = P(A = 1|X )

• Denote by C(d ,X ) = Ad(X ) + (1− A){1− d(X )} to be the
d-consistency indicator; that is C(d ,X ) = 1 if patient with
baseline covariate X actually receives treatment consistent with
treatment regime d , and 0 otherwise

• Propensity for receiving treatment regime d ,

π(d ,X ) = π(X )d(X ) + {1− π(X )}{1− d(X )}

14/35 Optimal Treatment Regime for Survival Endpoints



Additionally define

• Failure time distribution given A and X
H(r ,a,X ) = P(T ≥ r |A = a,X ),
H(r ,d ,X ) = H(r ,1,X )d(X ) + H(r ,0,X ){1− d(X )}

• Censoring distribution given A and X
K (r ,a,X ) = P(C ≥ r |A = a,X ),
K (r ,d ,X ) = K (r ,1,X )d(X ) + K (r ,0,X ){1− d(X )}
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AIPWCC estimator

If we take the point of view that the propensity score and censoring
distribution are known or correctly specified then using
semiparametric theory for monotone missing data, all estimators of
V (d) can be written as

V̂ (d) = N−1
N∑

i=1

IFi(d),

where

IFi(d) =
C(d ,Xi)∆i f (Ui)

π(d ,Xi)K (Ui ,d ,Xi)

−
{
C(d ,Xi)− π(d ,Xi)

π(d ,Xi)

}
h1(Xi)

+
C(d ,Xi)

π(d ,Xi)

∫ ∞
0

dMc(r ,d ,Xi)

K (r ,d ,Xi)
h2(r ,Xi),

for arbitrary functions h1(Xi) and h2(r ,Xi)
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AIPWCC estimator

The optimal choice for h1(Xi) and h2(r ,Xi) are

IFi(d) =
C(d ,Xi)∆i f (Ui)

π(d ,Xi)K (Ui ,d ,Xi)

−
{
C(d ,Xi)− π(d ,Xi)

π(d ,Xi)

}
E
{

f (Ti)
∣∣Xi ,Ai = d(Xi)

}
+
C(d ,Xi)

π(d ,Xi)

∫ ∞
0

dMc(r ,d ,Xi)

K (r ,d ,Xi)
E
{

f (Ti)
∣∣Ti ≥ r ,Xi ,Ai = d(Xi)

}
,
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Motivation for AIPWCC estimator

• For any fixed treatment regime d we will observe the endpoint of
interest f{T ∗i (d)} if C(d ,Xi) = 1 and ∆i = 1, i.e., (Ci > Ui).

• The probability of seeing such a complete case for an individual
with covariate Xi is given by P{C(d ,Xi) = 1|Xi} × P{Ci >
Ui |Ai = d(Xi),Xi} = π(d ,Xi)K (d ,Ui ,Xi) and is the inverse of the
weight used in the first term

• The first term is the inverse probability weighted
complete-case estimator and is an unbiased estimator for V (d)
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Motivation

• For a patient that does not receive treatment consistent with
regime d ; that is, C(d ,Xi) = 0, then we observe the baseline
covariate Xi but, f{T ∗i (d)} is missing. The second term and the
first augmentation term has expectation equal to zero and the
optimal choice is used to capture back some information for such
individuals

• For patients that receive treatment consistent with regime d but
are censored, C(d ,Xi) = 1 and ∆i = 0, then we observe the
baseline covariates Xi and the partial information that their
survival time T ∗i (d) was greater than Ci . The third term and the
second augmentation term also has expectation zero and the
optimal choice captures back some information for these
patients.
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AIPWCC estimator

• Note that the estimator proposed needs π(X ), K (r ,a,X ) and
H(r ,a,X ), for a = (0,1), which are not known to us and must be
estimated from the data

• Often logistic regression models are used to estimate π(X )

• Often Cox’s proportional hazards regression models, stratified by
treatment, are used to estimate K (r ,a,X ) and H(r ,a,X ), for
a = (0,1)

• This estimator can be used to estimate E [f{T ∗(1)}] and
E [f{T ∗(0)}] by taking d(Xi) to be identically equal to 1 or 0
respectively
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Double robustness property

The AIPWCC estimator will be a consistent estimator for V (d) if
either
• π(X ) and K (r ,a,X ),a = 0,1 are correctly specified
• or H(r ,a,X ),a = 0,1 are correctly specified
• For a randomized study the propensity score π(X ) is known by

design and the censoring distribution can be estimated
consistently using the Kaplan-Meier estimator reversing the role
of failure and censoring.
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Value search estimator

Equipped with this estimator for V̂ (dη) the value search estimator for
the optimal estimator within the class Dη is simply

η̂opt = arg maxηV̂ (dη)

Issues

• V̂ (dη) is a non-smooth non-monotonic function of η; hence
difficult to maximize

• If the dimension of η is small we had some success with genetic
algorithms
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Classification perspective

• Recall V̂ (dη) = N−1∑N
i=1 IFi(dη)

•

IFi(dη) = d(Xi , η)IFi(1) + {1− d(Xi , η)}IFi(0)

= d(Xi , η){IFi(1)− IFi(0)}+ IFi(0)

• V̂ (dη) = N−1∑N
i=1 d(Xi , η)ĈF (Xi) + terms not involving η, where

ĈF (Xi) = IFi(1)− IFi(0)

• Note that E{IF1(1)− IFi(0)|Xi} = CF (Xi), where
• CF (Xi) = E{f (Ti)|Ai = 1,Xi} − E{f (Ti)|Ai = 0,Xi} is the

contrast function
• We also note that the optimal regime dopt (x) = I{CF (x) ≥ 0}
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Classification perspective

Some further algebra

• d(Xi , η)ĈF (Xi) = −|ĈF (Xi)|[I{ĈF (Xi) > 0} − d(Xi , η)]2+ terms
not involving η

• Hence η̂opt = arg minη

∑N
i=1 |ĈF (Xi)|[I{ĈF (Xi) > 0} − d(Xi , η)]2
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Classification Methods

Generic classification situation:
• Z = outcome , class , label ; here, Z = {0, 1} (binary )
• X = vector of covariates, features taking values in X , the feature

space
• d is a classifier: d : X → {0, 1}
• D is a family of classifiers , e.g.,

I Hyperplanes of the form

I(η0 + η1X1 + η2X2 > 0)

I Rectangular regions of the form

I(X1 < a1) + I(X1 ≥ a1,X2 < a2)
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Classification Methods

Generic classification problem:
• Training set: (Xi ,Zi), i = 1, . . . ,N
• Find classifier d ∈ D that minimizes

I Classification error
N∑

i=1

{Zi − d(Xi )}2

I Weighted classification error

N∑
i=1

wi{Zi − d(Xi )}2
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Classification Methods

Approaches:
• This problem has been studied extensively by statisticians and

computer scientists
• Machine learning (supervised learning)
• Many methods and software are available
• Recursive partitioning (CART ): Rectangular regions
• Support vector machines: Hyperplanes, etc.
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Classification perspective

From this perspective the value search estimator

η̂opt = arg minη

N∑
i=1

|ĈF (Xi)|[I{ĈF (Xi) > 0} − d(Xi , η)]2

is a weighted classification problem with
• X the feature space

• The class label Zi = I{ĈF (Xi) > 0}
• The weight wi = |ĈF (Xi)|
• Dη is the family of classifiers
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ASCERT study

• Retrospective analysis of patients with two or three vessel
coronary artery disease treated by PCI (0) or CABG (1)

• 7,391 patients from a substudy from 54 hospitals were used for
this analysis

• 28 baseline covariates were used including
• demographics (e.g., age, gender)
• risk factors (e.g., body mass index, smoking)
• symptoms and history of heart disease (e.g., chest pain,

congestive heart failure
• comorbidities (e.g., diabetes)
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ASCERT study

• Primary outcome was survival at four years
f{T ∗(d)} = I{T ∗(d) ≥ 4)

• Using all 28 covariates propensity score π(X ) was estimated
using logistic regression model

• H(r ,a,X ) and K (r ,a,X ) for a = 0,1 were estimated using
proportional hazards models stratified by treatment
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ASCERT study

• We considered regimes in the form of hyperplanes; i.e.,
d(X , η) = I(η0 + ηT

1 X ≥ 0)

• We used support vector machines with L1 norm where we
wrote our own software using linear programming to estimate η
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Results from the ASCERT study

Estimators of the value function P{T ∗(d) ≥ 4}

• V̂ (d̂opt ) = .862

• V̂ (1) = .841

• V̂ (0) = .816

• CI of {V̂ (d̂opt )− V̂ (1)} = (0.005,0.036)

• CI of {V̂ (d̂opt )− V̂ (0)} = (0.028,0.064)
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Results from the ASCERT study

Table: ASCERT analysis with original contrast function.

Treatment Number of patients Survival Probability (%)
CABG PCI

CABG 5024 86.9 80.2
PCI 2367 76.5 84.3
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Concluding remarks

• Estimating optimal treatment regime
• Regression estimator versus value search estimator
• Bias-variance tradeoff
• AIPWCC estimator is guaranteed to be a consistent estimator of

the value function for a randomized study and is doubly-robust for
an observational study

• Generalize to more than one decision and consider dynamic
treatment regimes
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