Optimal Treatment Regimes for Survival Endpoints from a Classification Perspective

Anastasios (Butch) Tsiatis and Xiaofei Bai

Department of Statistics North Carolina State University

NC STATE UNIVERSITY

- Coronary artery bypass grafting (CABG) versus percutaneous coronary intervention (PCI) for patients with coronary artery disease (CAD)
- Research Question: Based on the measured baseline covariates what treatment (PCI or CABG, coded as 0 and 1 respectively) should be recommended?
- Data from the ASCERT study–a retrospective study of patients with 2 or 3 vessel CAD treated with CABG or PCI
 - Observational study
 - We consider 7,391 patients from a substudy in 54 hospitals
 - Primary endpoint survival time
 - Baseline covariates measured prior to treatment

Treatment regime

- This problem can be cast by considering treatment regimes
- A treatment regime is a decision rule which takes an individual's baseline information and dictates which treatment to be given
- Formally: Letting X denote the vector of baseline covariates taking values $x \in \mathcal{X}$, then a treatment regime

$$d: \mathcal{X} \to (0, 1)$$

I.e., if X = x then patient treated according to regime *d* receives

- treatment 1 if d(x) = 1
- treatment 0 if d(x) = 0
- Denote by D the class of all treatment regimes. Within this class which is the optimal regime (i.e., best in some sense)?

Potential outcomes

- Let T*(1) denote the survival time of an arbitrary patient if (possibly contrary to fact) they received treatment 1; similarly, we define T*(0)
- In the population there is some unobservable distribution of {X, T*(1), T*(0)}
- *T*^{*}(*d*) = *d*(*X*)*T*^{*}(1) + {1 − *d*(*X*)}*T*^{*}(0), the survival time for patient treated according to regime *d*
- We define primary outcome as $f\{T^*(d)\}$

•
$$f\{T^*(d)\} = I\{T^*(d) \ge u\}$$

- $f{T^*(d)} = \min{T^*(d), L}$
- The value of *d*, denoted by V(*d*) = E[f{T*(*d*)}], the mean outcome for a population treated according to regime *d*; e.g., P{T*(*d*) ≥ *u*} or E[min{T*(*d*), L}]. Note we can also define V(1) and V(0)

• Optimal treatment regime $d^{opt} \in \mathcal{D}$ satisfies

 $V(d) \leq V(d^{opt})$ for all $d \in \mathcal{D}$

• Statistical goal: Estimate *d*^{opt} from data

- We observe censored survival data $(U_i, \Delta_i, A_i, X_i), i = 1, ..., N$,
 - $U_i = \min(T_i, C_i)$ (i.e., minimum of observed survival time T_i and censoring time C_i)
 - $\Delta_i = I(T_i \leq C_i)$ (failure indicator)
 - A_i is assigned treatment indicator
 - X_i is vector of baseline covariates

Assumptions

- Observed survival time for patient *i*, $T_i = A_i T_i^*(1) + (1 A_i) T_i^*(0)$
- $C \perp T \mid X, A$ (non-informative censoring)
- $A \perp \{T^*(1), T^*(0)\} | X$ (no unmeasured confounders)

 Under the previous assumptions the optimal treatment regime is given by

$$d^{opt}(x) = I[E\{f(T)|A = 1, X = x\} \ge E\{f(T)|A = 0, X = x\}]$$

or equivalently

$$d^{opt}(x) = I\{CF(x) \ge 0\},\$$

where the contrast function $CF(x) = E\{f(T)|A = 1, X = x\} - E\{f(T)|A = 0, X = x\}.$ Regression estimator: An obvious strategy is to develop a model for the conditional distribution of *T* given *A* and *X* say, with parameters θ; derive *E*{*f*(*T*)|*A*, *X*} = *Q*(*X*, *A*; θ); estimate θ from the data; then

$$\widehat{d}^{opt}(x) = I\{Q(x, 1; \widehat{ heta}) \ge Q(x, 0; \widehat{ heta})\}$$

or equivalently

$$\widehat{\mathcal{H}}^{opt}(x) = I\{\widehat{\mathcal{CF}}(x, \hat{\theta}) \ge 0\},$$

where $\widehat{CF}(x) = Q(x, 1; \hat{\theta}) - Q(x, 0; \hat{\theta})$

• E.g., consider proportional hazards regression model:

$$\lambda(t|\mathbf{A}, \mathbf{X}) = \lambda_0(t) \exp\{\gamma_0 + \gamma_1^T \mathbf{X} - \mathbf{A}(\eta_0 + \eta_1^T \mathbf{X})\}$$

- For such a model $\hat{d}^{opt}(x) = I(\hat{\eta}_0 + \hat{\eta}_1^T x \ge 0)$ (true for any function $f(\cdot)$)
- Difficulty: If model is misspecified then the regime \hat{d}^{opt} may not be that good

- Searching for an optimal treatment regime among all possible regimes may be too ambitious
- For practical reasons and ease of interpretability we may want to consider a class of restricted regimes D_η, indexed by a finite parameter η; e.g.,
 - $\mathcal{D}_{\eta} = I(\eta_0 + \eta_1^T x \ge 0)$ (hyperplanes)
 - $\mathcal{D}_{\eta} = I(x_1 < \eta_1, x_2 < \eta_2)$ (rectangular regions)
- The optimal restricted regime d^{opt}_η = d(x, η^{opt}), is such that V(d_η) ≤ V(d_{η^{opt}}) for all η

- We note that the proportional hazards model with interaction terms led to \mathcal{D}_{η} in the form of hyperplanes
- Also note that the regression estimator $\hat{d}^{opt}(x) = I(\hat{\eta}_0 + \hat{\eta}_1^T x \ge 0)$ may be a poor estimator of d_{η}^{opt} within the class \mathcal{D}_{η} ; i.e., $(\hat{\eta}_0, \hat{\eta}_1)$ may be a poor estimator of $(\eta_0^{opt}, \eta_1^{opt})$ if the model is misspecified

- For any regime *d* find a robust estimator for V(*d*) = E[f{T*(*d*)}], say *V*(*d*)
- Directly search for optimal estimator within the class \mathcal{D}_η

$$\widehat{\eta}^{\textit{opt}} = \arg \max_{\eta} \widehat{V}(\textit{d}_{\eta})$$

If we were able to observe the potential outcomes
 {*T*^{*}_i(*d*), *i* = 1,..., *N*}, then a nonparametric unbiased estimator
 for *V*(*d*) = *E*[*f*{*T*^{*}(*d*)}] would be

$$\widehat{V}(d) = N^{-1} \sum_{i=1}^{N} f\{T_i^*(d)\}$$

- Of course, we cannot observe potential outcomes and our estimator must be based on the observed data (U_i, Δ_i, X_i), i = 1,..., N.
- Using missing data analogy we propose the augmented inverse probability weighted complete case estimator (AIPWCC)

We first define the following notation:

- Propensity score $\pi(X) = P(A = 1|X)$
- Denote by C(d, X) = Ad(X) + (1 − A){1 − d(X)} to be the d-consistency indicator; that is C(d, X) = 1 if patient with baseline covariate X actually receives treatment consistent with treatment regime d, and 0 otherwise
- Propensity for receiving treatment regime d,

$$\pi(d, X) = \pi(X)d(X) + \{1 - \pi(X)\}\{1 - d(X)\}$$

- Failure time distribution given A and X $H(r, a, X) = P(T \ge r | A = a, X),$ $H(r, d, X) = H(r, 1, X)d(X) + H(r, 0, X)\{1 - d(X)\}$
- Censoring distribution given A and X $K(r, a, X) = P(C \ge r | A = a, X),$ $K(r, d, X) = K(r, 1, X)d(X) + K(r, 0, X)\{1 - d(X)\}$

AIPWCC estimator

If we take the point of view that the propensity score and censoring distribution are known or correctly specified then using semiparametric theory for **monotone missing data**, all estimators of V(d) can be written as

$$\widehat{V}(d) = N^{-1} \sum_{i=1}^{N} IF_i(d),$$

where

$$\begin{aligned} \mathsf{IF}_{i}(d) &= \frac{\mathcal{C}(d,X_{i})\Delta_{i}f(U_{i})}{\pi(d,X_{i})\mathcal{K}(U_{i},d,X_{i})} \\ &- \left\{\frac{\mathcal{C}(d,X_{i}) - \pi(d,X_{i})}{\pi(d,X_{i})}\right\}h_{1}(X_{i}) \\ &+ \frac{\mathcal{C}(d,X_{i})}{\pi(d,X_{i})}\int_{0}^{\infty}\frac{\mathrm{d}M_{c}(r,d,X_{i})}{\mathcal{K}(r,d,X_{i})}h_{2}(r,X_{i}). \end{aligned}$$

for arbitrary functions $h_1(X_i)$ and $h_2(r, X_i)$

NC STATE UNIVERSITY

The optimal choice for $h_1(X_i)$ and $h_2(r, X_i)$ are

$$\begin{aligned} \mathsf{IF}_i(d) &= \frac{\mathcal{C}(d,X_i)\Delta_i f(U_i)}{\pi(d,X_i)K(U_i,d,X_i)} \\ &- \left\{ \frac{\mathcal{C}(d,X_i) - \pi(d,X_i)}{\pi(d,X_i)} \right\} \mathsf{E}\Big\{ f(T_i) \big| X_i, A_i = d(X_i) \Big\} \\ &+ \frac{\mathcal{C}(d,X_i)}{\pi(d,X_i)} \int_0^\infty \frac{\mathsf{d}M_c(r,d,X_i)}{K(r,d,X_i)} \mathsf{E}\Big\{ f(T_i) \big| T_i \ge r, X_i, A_i = d(X_i) \Big\}, \end{aligned}$$

NC STATE UNIVERSITY

- For any fixed treatment regime *d* we will observe the endpoint of interest *f*{*T*^{*}_i(*d*)} if C(*d*, X_i) = 1 and Δ_i = 1, i.e., (C_i > U_i).
- The probability of seeing such a complete case for an individual with covariate X_i is given by P{C(d, X_i) = 1|X_i} × P{C_i > U_i|A_i = d(X_i), X_i} = π(d, X_i)K(d, U_i, X_i) and is the inverse of the weight used in the first term
- The first term is the inverse probability weighted complete-case estimator and is an unbiased estimator for V(d)

Motivation

- For a patient that does not receive treatment consistent with regime *d*; that is, C(d, X_i) = 0, then we observe the baseline covariate X_i but, f{T_i*(d)} is missing. The second term and the first augmentation term has expectation equal to zero and the optimal choice is used to capture back some information for such individuals
- For patients that receive treatment consistent with regime *d* but are censored, C(d, X_i) = 1 and Δ_i = 0, then we observe the baseline covariates X_i and the partial information that their survival time T_i^{*}(d) was greater than C_i. The third term and the second augmentation term also has expectation zero and the optimal choice captures back some information for these patients.

- Note that the estimator proposed needs π(X), K(r, a, X) and H(r, a, X), for a = (0, 1), which are not known to us and must be estimated from the data
- Often logistic regression models are used to estimate $\pi(X)$
- Often Cox's proportional hazards regression models, stratified by treatment, are used to estimate K(r, a, X) and H(r, a, X), for a = (0, 1)
- This estimator can be used to estimate $E[f{T^*(1)}]$ and $E[f{T^*(0)}]$ by taking $d(X_i)$ to be identically equal to 1 or 0 respectively

The AIPWCC estimator will be a consistent estimator for V(d) if either

- $\pi(X)$ and K(r, a, X), a = 0, 1 are correctly specified
- or H(r, a, X), a = 0, 1 are correctly specified
- For a randomized study the propensity score π(X) is known by design and the censoring distribution can be estimated consistently using the Kaplan-Meier estimator reversing the role of failure and censoring.

Equipped with this estimator for $\widehat{V}(d_{\eta})$ the value search estimator for the optimal estimator within the class \mathcal{D}_{η} is simply

$$\widehat{\eta}^{opt} = rg \max_{\eta} \widehat{V}(d_{\eta})$$

Issues

- *V*(*d*_η) is a non-smooth non-monotonic function of η; hence difficult to maximize
- If the dimension of η is small we had some success with genetic algorithms

Classification perspective

• Recall
$$\widehat{V}(d_{\eta}) = N^{-1} \sum_{i=1}^{N} IF_i(d_{\eta})$$

$$\begin{aligned} & IF_i(d_\eta) = d(X_i, \eta)IF_i(1) + \{1 - d(X_i, \eta)\}IF_i(0) \\ & = d(X_i, \eta)\{IF_i(1) - IF_i(0)\} + IF_i(0) \end{aligned}$$

- $\widehat{V}(d_{\eta}) = N^{-1} \sum_{i=1}^{N} d(X_i, \eta) \widehat{CF}(X_i) + \text{terms not involving } \eta$, where $\widehat{CF}(X_i) = IF_i(1) IF_i(0)$
- Note that $E\{IF_1(1) IF_i(0)|X_i\} = CF(X_i)$, where
- $CF(X_i) = E\{f(T_i) | A_i = 1, X_i\} E\{f(T_i) | A_i = 0, X_i\}$ is the *contrast function*
- We also note that the optimal regime $d^{opt}(x) = I\{CF(x) \ge 0\}$

Some further algebra

- d(X_i, η) CF(X_i) = −|CF(X_i)|[I{CF(X_i) > 0} − d(X_i, η)]²+ terms not involving η
- Hence $\widehat{\eta}^{opt} = \arg \min_{\eta} \sum_{i=1}^{N} |\widehat{CF}(X_i)| [I\{\widehat{CF}(X_i) > 0\} d(X_i, \eta)]^2$

Generic classification situation:

- Z = outcome, class, label; here, $Z = \{0, 1\}$ (binary)
- X = vector of covariates, *features* taking values in X, the *feature space*
- *d* is a *classifier*: $d: \mathcal{X} \to \{0, 1\}$
- \mathcal{D} is a *family of classifiers*, e.g.,
 - ► Hyperplanes of the form

$$I(\eta_0 + \eta_1 X_1 + \eta_2 X_2 > 0)$$

► Rectangular regions of the form

$$I(X_1 < a_1) + I(X_1 \ge a_1, X_2 < a_2)$$

Generic classification problem:

- *Training set:* $(X_i, Z_i), i = 1, ..., N$
- *Find* classifier $d \in D$ that minimizes
 - ► Classification error

$$\sum_{i=1}^N \{Z_i - d(X_i)\}^2$$

Weighted classification error

$$\sum_{i=1}^N w_i \{Z_i - d(X_i)\}^2$$

Approaches:

- This problem has been studied extensively by *statisticians* and *computer scientists*
- Machine learning (supervised learning)
- Many methods and software are available
- Recursive partitioning (CART): Rectangular regions
- Support vector machines: Hyperplanes, etc.

From this perspective the value search estimator

$$\widehat{\eta}^{opt} = \arg \min_{\eta} \sum_{i=1}^{N} |\widehat{CF}(X_i)| [I\{\widehat{CF}(X_i) > 0\} - d(X_i, \eta)]^2$$

is a weighted classification problem with

- X the feature space
- The class label $Z_i = I\{\widehat{CF}(X_i) > 0\}$
- The weight $w_i = |\widehat{CF}(X_i)|$
- \mathcal{D}_{η} is the family of classifiers

- Retrospective analysis of patients with two or three vessel coronary artery disease treated by PCI (0) or CABG (1)
- 7,391 patients from a substudy from 54 hospitals were used for this analysis
- 28 baseline covariates were used including
 - demographics (e.g., age, gender)
 - risk factors (e.g., body mass index, smoking)
 - symptoms and history of heart disease (e.g., chest pain, congestive heart failure

29/35

comorbidities (e.g., diabetes)

- **Primary outcome** was survival at four years $f{T^*(d)} = I{T^*(d) \ge 4}$
- Using all 28 covariates propensity score π(X) was estimated using logistic regression model
- *H*(*r*, *a*, *X*) and *K*(*r*, *a*, *X*) for *a* = 0, 1 were estimated using proportional hazards models stratified by treatment

- We considered regimes in the form of hyperplanes; i.e., $d(X, \eta) = I(\eta_0 + \eta_1^T X \ge 0)$
- We used support vector machines with L₁ norm where we wrote our own software using linear programming to estimate η

Estimators of the value function $P\{T^*(d) \ge 4\}$

- $\widehat{V}(\widehat{d}^{opt}) = .862$
- $\hat{V}(1) = .841$
- $\widehat{V}(0) = .816$
- Cl of $\{\widehat{V}(\widehat{d}^{opt}) \widehat{V}(1)\} = (0.005, 0.036)$
- Cl of $\{\widehat{V}(\widehat{d}^{opt}) \widehat{V}(0)\} = (0.028, 0.064)$

Table: ASCERT analysis with original contrast function.

Treatment	Number of patients	Survival Probability (%)	
		CABG	PCI
CABG	5024	86.9	80.2
PCI	2367	76.5	84.3

- Estimating optimal treatment regime
 - Regression estimator versus value search estimator
 - Bias-variance tradeoff
 - AIPWCC estimator is guaranteed to be a consistent estimator of the value function for a randomized study and is doubly-robust for an observational study
- Generalize to more than one decision and consider dynamic treatment regimes

Bai et al. (2016). Optimal treatment regimes for survival endpoints using a locally-efficient doubly-robust estimator from a classification perspective. *In revision Lifetime Data Analysis*.